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Abstract

Reconstructing Computed tomography (CT) images from sparse measurement is a
well-known ill-posed inverse problem. The Iterative Reconstruction (IR) algorithm
is a solution to inverse problems. However, recent IR methods require paired data
and the approximation of the inverse projection matrix. To address those problems,
we present Latent Diffusion Iterative Reconstruction (LDIR), a pioneering zero-
shot method that extends IR with a pre-trained Latent Diffusion Model (LDM) as
a accurate and efficient data prior. By approximating the prior distribution with
an unconditional latent diffusion model, LDIR is the first method to successfully
integrate iterative reconstruction and LDM in an unsupervised manner. LDIR
makes the reconstruction of high-resolution images more efficient. Moreover,
LDIR utilizes the gradient from the data-fidelity term to guide the sampling process
of the LDM, therefore, LDIR does not need the approximation of the inverse
projection matrix and can solve various CT reconstruction tasks with a single
model. Additionally, for enhancing the sample consistency of the reconstruction,
we introduce a novel approach that uses historical gradient information to guide
the gradient. Our experiments on extremely sparse CT data reconstruction tasks
show that LDIR outperforms other state-of-the-art unsupervised and even exceeds
supervised methods, establishing it as a leading technique in terms of both quantity
and quality. Furthermore, LDIR also achieves competitive performance on nature
image tasks. It is worth noting that LDIR also exhibits significantly faster execution
times and lower memory consumption compared to methods with similar network
settings. Our code will be publicly available.

1 Introduction

Computed tomography (CT) is a crucial medical imaging technique in contemporary medicine to
aid physicians in diagnosing relevant conditions. Measurements in CT are obtained by X-rays
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Figure 1: LDIR is capable of reconstructing both nature images and medical data in a zero-shot
manner. In this paper, we demonstrate the reconstruction ability of our method on various datasets
and measurements. Different from previous works, LDIR can reconstruct high-resolution images
(512 x 512) from sparse measurements using unconditional latent diffusion models. FBP is filtered
backprojection. The display window of CT images is set to [-150, 256] HU.

projections of an object from different views. However, the use of X-rays in CT exposes the
human body to potentially harmful doses of radiation, raising concerns among the public regarding
radiation-induced diseases. Therefore, reducing the exposure dose, such as sparse-view and limited-
angle imaging, while maintaining the quality of imaging has beneficial implications for both public
health and medical diagnosis, specifically in intraoperative CT. Due to the sparse information,
the CT reconstruction processes are well-known ill-posed inverse problems. In the past decade,
numerous works have focused on Iterative Reconstruction (IR), which is considered a solution to CT
reconstruction Donoho (2006); Candès et al. (2006). Iterative reconstruction aims to recover signals
x from noisy measurements y = Ax+ n, where n represents the noise in the measuring process and
A is the linear projection matrix that typically maps x to a lower dimension. As a result, a typical IR
process can be formulated as follows:

x̂ = argmin
x

||Ax− y||22 + λR (x) , (1)

here, ||Ax− y||22 is the data-fidelity term that ensures the reconstructed results are consistent with
the measurements, while λR (x) is a prior term that ensures the reconstructed results are realistic and
follow the distribution p (x) of the ground truth images.

The key challenge of IR is to find appropriate data prior or sparse transformation to generate the prior
term. Traditional IR methods Beck, Teboulle (2009); Kim et al. (2016); Zhao et al. (2000) leverage
the total variation, nonlocal means, or wavelets to gain the reconstructed results by a handcrafted prior
and the approximation of the inverse projection matrix. Inspired by the success of deep learning and
neural network, recent data-driven methods Bora et al. (2017); Chen et al. (2018) achieve impressive
performance by learning the prior and data-fidelity terms. However, most of these methods require
large-scale paired data to train their networks. Besides, they directly project the measurement to the
results and they also need to retrain while the detector geometry changes. Although method Song
et al. (2022) solves these problems mentioned above by introducing a score-based generative model,
it still needs to know the approximation of the inverse projection matrix which is difficult to be
obtained in the real-world application. Additionally, these methods use direct projection to replace
the data-fidelity term which makes they make them need to design different sampling procedures for
different detector geometries.
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In this paper, we introduce a novel Latent Diffusion Iterative Reconstruction (LDIR) for sparse CT
data reconstruction in a zero-shot manner. The LDIR is the first to extend traditional IR techniques by
incorporating a latent diffusion model. Specifically, we train a latent unconditional diffusion model
to learn the data distribution. In the reverse process, the trained diffusion model is utilized to replace
the prior term in the regular IR. In particular, to generate specified prior from the unconditional
diffusion model, the gradient from the data-fidelity term is applied to guide the sampling process of
the diffusion model. Therefore, we do not need any paired data or inverse of the measurement matrix
to train our network. Moreover, LDIR can solve various CT reconstruction tasks with a single model.
In addition, by guiding the reverse diffusion sampling process in the latent space, our zero-shot
method can generate high-resolution images with impressive performance. Since LDIR does not
make any assumption on the data-fidelity term, we can use any differentiable measurement function
to keep the consistency of data. Further on, we propose a novel guidance strategy to adaptively adjust
the sample-level gradient by fusing the history gradient, thereby improving the performance of our
zero-shot diffusion model.

Extensive experiments demonstrate our method outperforms state-of-the-art supervised and unsuper-
vised methods for extremely sparse CT data reconstruction. Additionally, due to the commonality
of iterative reconstruction on CT images and natural images, we extend LDIR to the natural image
restoration task, and our approach achieves competitive performance compared to other state-of-the-
art zero-shot methods. Our approach provides a valuable zero-shot tool for solving inverse problems
with latent diffusion models, allowing us to leverage the vast amount of available latent diffusion
models. Fig. 1 shows some visual results of the proposed method.

2 Background

2.1 Diffusion models

Consider a T -step Gaussian diffusion process, where xt ∈ Rn, t ∈ [0, . . . , T − 1] and initial x0 is
sampled from the original data distribution Pdata. We define the forward diffusion process using
stochastic differential equation (SDE) Song et al. (2021):

dx = f (x, t) dt+ g (t) dw, (2)

where f (·, t) : Rd → Rd is a drift coefficient function, g (t) ∈ R is defined as a diffusion coefficient
function, and w ∈ Rn is a standard n-dimensional Brownian motion. Thus, the reverse SDE of
Eq. (2) can also defined as:

dx =
[
f (x, t)− g (t)

2∇x log pt (x)
]
dt+ g (t) dw, (3)

where dt is a negative infinitesimal time step. The reverse SDE defines a generative process
that transforms standard Gaussian noise into meaningful content. To accomplish this trans-
formation, the score function ∇x log pt (x) needs to be matching, which is typically replaced
with ∇x log p0|t (xt|x0) in practice. Therefore, we can train a score model sθ (x, t), so that
sθ (x, t) ≈ ∇x log pt (x) ≈ ∇x log p0|t (xt|x0) using the following score-matching objective:

min
θ

Et∈[0,...,T−1],x0∼Pdata,xt∼p0|t(xt|x0)

[∣∣∣∣sθ (x, t)−∇x log p0|t (xt|x0)
∣∣∣∣2
2

]
. (4)

Therefore, the reverse SDE can yield meaningful contents x0 ∼ Pdata from random noises xT−1 ∼
N (0, I) by iteratively using sθ (x, t) to estimate the scores ∇x log pt (x). In our experiments, we
adopt the standard Denoising Diffusion Probabilistic Models (DDPM) Ho et al. (2020) which is
equivalent to the above variance preserving SDE (VP-SDE Song et al. (2021)).

2.2 Diffusion model for inverse problem solving

To solve the inverse problems using the diffusion model, various workarounds are proposed Rombach
et al. (2022); Saharia et al. (2022); Gao et al. (2023); Luo et al. (2023). These methods use conditional
diffusion models to iteratively denoise Gaussian noise and obtain reconstructions. However, these
approaches have limitations, as they rely on conditional diffusion models that require paired data for
training and can only handle specific tasks without retraining. To address these issues, several zero-
shot diffusion-based inverse solvers Lugmayr et al. (2022); Song et al. (2022); Kawar et al. (2022);
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Chung et al. (2022); Wang et al. (2023) have been proposed. Typically, assuming n ≡ 0, for each
denoising step, they Lugmayr et al. (2022); Song et al. (2022); Wang et al. (2023) unconditionally
estimate new denoised samples based on the previous step, followed by replacing the corresponding
items in the denoised samples using the measurement A−1y, which is also known as range-null
space decomposition Wang et al. (2023). This approach ensures data consistency, but it fails in
the case of noisy measurements, since A−1y is not a correct corresponding item for the denoised
samples. To address this limitation, alternative methods Chung et al. (2023b,a) have been proposed
to solve the inverse problems with noised measurements. Rather than directly replace items, these
approaches use the gradient of ||y −Ax||22 to conditionally guide the generative process. These
methods are robust to noise and can process nonlinear projection operators. However, these methods
try to solve inverse problems on the pixel space and make strong assumptions on the data-fidelity term,
which significantly underestimates the complexity of real-world problems and can not reconstruct
high-resolution results.

3 Method

3.1 Diffusion iterative reconstruction

Generally, it is possible to transform the IR methods presented in Eq. (1) into a more generic form:

x̂ = argmin
x

E (x) (5)

= argmin
x

U (Ax, y) + λR (x) , (6)

where U is a measurement function that ensures data consistency. Assuming that both the measure-
ment function and prior term are differentiable, it is possible to apply gradient descent to Eq. (6).
This yields an ordinary differential equation (ODE) for iterative reconstruction:

xt−1 = xt −
∂E (x)

∂xt
(7)

= xt − (ϵ∇xt
U (Axt, y) + λt∇xt

R (xt)) , (8)

where guidance rate ϵ and λt are used to balance the consistency and realness. In practice, we can
replace λ∇xt

R (xt) with a step-dependent prior function λt∇xt
R (xt, t) to balance realness and

data consistency, as demonstrated by Chen et al. (2018):

xt−1 = (xt − λt∇xt
R (xt, t))− ϵ∇xt

U (Axt, y) . (9)

As demonstrated by Song et al. (2021), the score function is a powerful tool for representing proba-
bility distributions. The score function does not require the computation of a tractable normalizing
constant or its approximation. This makes it possible to estimate log p (x) using the score function.
By replacing the prior term ∇xt

R (xt, t) with the score function ∇xt
log pt (x), it is possible to

ensure that the new prior term accurately represents the probability distribution without requiring
heavy computation:

xt−1 = (xt − λt∇x log pt (x))− ϵ∇xt U (Axt, y) , (10)

In Eq. (4), we can use a score model sθ (xt, t) to approximate∇xt log pt (x) using the score matching
technique:

xt−1 ≃ (xt − λt sθ (xt, t))− ϵ∇xt U (Axt, y) . (11)

In fact, the first term xt − λt sθ (x, t) is Eq. (3) with a noise-free constraint 3. Thus, we can relax the
noise-free constraint and use Eq. (3) to replace this term:

xt−1 ≃ xt − (λt sθ (xt, t)− g (t) z)︸ ︷︷ ︸
Prior term

− ϵ∇xt
U (Axt, y)︸ ︷︷ ︸

Data-fidelity term

, z ∼ N (0, I) . (12)

We propose a new iterative reconstruction method called Diffusion Iterative Reconstruction (DIR).
The model uses a score model to represent the original data distribution and employs it as a learned
prior. Algo. 1 demonstrates the pixel guidance process of DIR.

3f (xt, t) = g (t) z = 0 and g (t)2 = λt
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It is worth noting that our DIR has a mathematical form that is similar to the approach proposed
by Chung et al. (2023b). However, our approach is more general and can be applied to a wider range
of scenarios. Diffusion Posterior Sampling (DPS) Chung et al. (2023b) models the data consistency
term U (·, ·) as a noise measurement problem. The evaluation function for the data-fidelity term
is derived based on the prior assumption of the noise distribution (such as the L2 function for
Gaussian noise). This approach works well when the noise type is known in the measurement process.
However, it is challenging to estimate the noise distribution and derive the correct evaluation function
in real-world applications. In contrast, our DIR models the data-fidelity term as a quality evaluation
function without any assumptions about the noise distribution. Thus, the evaluation function U (·, ·)
can be any differentiable evaluation function, allowing for more flexibility.

Algorithm 1 Pixel-space data reconstructing
Require: : N, y

1: xT ∼ N
2: for do {i = T − 1, . . . , 0}
3: ŝ← sθ (xi, i)
4: x0|i ← 1√

ᾱi
(xi + (1− ᾱi) ŝ)

5: z ∼ N (0, I)

6: x′
i−1 ←

√
ᾱi−1βi

1−ᾱi
x′
0|i+

√
αi(1−ᾱi−1)

1−ᾱi
xi+

g (i) z
7: xi−1 ← x′

i−1 − ϵ∇xi
U
(
Ax′

i−1, y
)

8: end for
9: return x0|0

Algorithm 2 Latent-space data reconstructing
Require: : N, y,D

1: ℓT ∼ N
2: for do {i = T − 1, . . . , 0}
3: ŝ← sθl (ℓi, i)
4: ℓ0|i ← 1√

ᾱi
(ℓi + (1− ᾱi) ŝ)

5: z ∼ N (0, I)

6: ℓ′i−1 ←
√
ᾱi−1βi

1−ᾱi
ℓ′0|i +

√
αi(1−ᾱi−1)

1−ᾱi
ℓi +

g (i) z
7: ℓi−1 ← ℓ′i−1 − ϵ∇ℓi U(AD

(
ℓ′i−1), y

)
8: end for
9: x0|0 ← D

(
ℓ0|0

)
10: return x0|0

3.2 History gradient update

In what follows, we show that introducing history gradient update policies can provide better
reconstruction results. The basic formulation of gradient guidance in Eq. (12) corresponds to a simple
gradient descent scheme. The guidance rate ϵ can be thought of as the learning rate value in the
Stochastic Gradient Descent (SGD). Thus, in order to further improve the data consistency, we adopt
gradient information from the previous steps. Because the history gradient information can provide
sample-level information to decide the optimization direction of the guidance process. This is also
known as the first-order gradient-based optimization. Here, we demonstrate two variants of gradient
update policies based on two typical optimizers.

Momentum-like gradient update policy. Similar to the Momentum optimizer Sutskever et al.
(2013), we consider to use the moving averages mt of the gradients ∇xtU (Axt, y) to perform
gradient descent:

mt = ηmt−1 + (1− η)∇xt
U (Axt, y) , (13)

xt−1 = xt − ϵmt, (14)

where η is a hyper-parameter to adjust the factor of momentum.

Adam-like gradient update policy. Adam optimizer Kingma, Ba (2014) uses momentum and
adaptive learning rate to perform gradient descent:

mt = η1m
t−1 + (1− η1)∇xt

U (Axt, y) , (15)

vt = η2v
t−1 + (1− η2)∇xt

U (Axt, y)
2
, (16)

xt−1 = xt − ϵ
m̂t

√
v̂t + ε

, (17)

where (η1, η2) are the coefficients used to calculate the exponentially weighted moving averages of
gradient and its square, while ε helps improve the numerical stability. With the help of the moving
averages mt and vt, we can efficiently locate the flat minima.

It is worth noting that the choice of ϵ and gradient policy is dependent on the evaluation function
U (Details and ablation studies can be found in Appendix. C). Our gradient update policies are
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Figure 2: Our LDIR can handle both CT reconstruction and nature image restoration in the same
pipeline. We guide latent diffusion models by using the gradients di = ∇ℓiU (AD (ℓi) , y) along
with history gradients. The guidance is obtained through gradients, rather than direct projection.

compatible with DIR, LDIR, and DPS whether on pixel space or latent space. The details are
demonstrated in the ablation studies. The detail of LDIR algorithms with the above gradient update
policies are presented in Appendix A.

3.3 Latent diffusion iterative reconstruction

Our review of previous works on diffusion-based data reconstruction, including Chung et al. (2023b,
2022, 2023a,c); Song et al. (2022); Wang et al. (2023), reveals that they all perform reconstruction
in the pixel space, which requires significant computational resources. To address this limitation,
we draw inspiration from the Latent Diffusion Models (LDMs) proposed by Rombach et al. (2022)
and our DIR. We introduce a novel data reconstruction diffusion model called Latent Diffusion
Iterative Reconstruction (LDIR). LDIR offers several advantages over previous methods: (i) Instead
of processing images in the pixel space, we encode images into a low-dimensional latent space,
enabling us to process them more efficiently with fewer computational demands. (ii) The latent
space contains significantly higher information density compared to the pixel space, allowing us to
incorporate natural priors such as sparsity and improve the quality of the restored data.

From pixels to latents. To encode pixels to latents, we construct an autoencoder comprising an
encoder E and a decoder D. Specifically, given an input image x in the pixel space, E maps x to
a low-dimensional latent vector ℓ = E (x). D reconstructs the image x̄ = D (E (x)) from ℓ. To
incorporate the sparsity prior of x, we use the Vector Quantized Variational Autoencoder (VQ-VAE)
proposed by Kingma, Welling (2013); Rezende et al. (2014); Esser et al. (2021) with the quantization
layer Van Den Oord et al. (2017).

Score matching for latents. With our semantic compression model E and D, we can now establish
the score of latents∇ℓ log pt (ℓ) and use score model sθℓ to approx it with the following objective:

min
θ

Et∈[0,...,T−1],ℓ0∼pℓ,ℓt∼p0|t(ℓt|ℓ0)

[∣∣∣∣sθℓ (ℓ, t)−∇ℓ log p0|t (ℓt|ℓ0)
∣∣∣∣2
2

]
, (18)

where p (ℓ) = p (E (x)) and x ∼ p (x).

Conditional guidance process on the latent space. Similar to the conditional guidance process in
the pixel space, we begin by using the score model sθℓ to generate latents from standard Gaussian
noise:

ℓ′t−1 = ℓt − f (ℓ, t)− g (t)
2
sθℓ (ℓ, t) + g (t) z, z ∼ N (0, I) , (19)

We need to use D to decode ℓ to pixel space, and compute the data consistency term U (AD (ℓ) , y),
which can be derived to:

ℓt−1 = ℓ′t−1 − ϵ∇ℓt U (AD (ℓt) , y) . (20)

Thus, we can get the conditional guidance algorithm of LDIR as:

ℓt−1 ≃ ℓt − (λt sθℓ (ℓt, t)− g (t) z)︸ ︷︷ ︸
Prior term

− ϵ∇ℓt U (AD (ℓt) , y)︸ ︷︷ ︸
Data-fidelity term

, z ∼ N (0, I) . (21)

The final results can be obtained by decoding the final latent x0 = D (ℓ0) using the decoder D.

6
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Figure 3: Qualitative results of medical sparse data reconstruction. The resolution of CT images is
256× 256 The display window of CT images is set to [−150, 256] HU. The standard measurement
of CT is 512 views around 180 degrees.

4 Experiments

4.1 Experimental setup

Models and datasets. For medical image reconstruction, we train our DDPM and LDM model on the
2016 American Association of Physicists in Medicine (AAPM) grand challenge dataset. The dataset
has normal-dose data from 10 patients. 9 patients’ data are used for training, and 1 for validation
which contains 526 images. To simulate low-dose imaging, a parallel-beam imaging geometry with
180 degrees was employed. Regarding inpainting and super-resolution tasks, we test our method
on CelebAHQ 1k 256 × 256 dataset Liu et al. (2015) and LSUN-bedroom 256 × 256 dataset Yu
et al. (2015). We utilize pretrained DDPM and LDM models from the open-source model repository
from Ho et al. (2020); Rombach et al. (2022). All the images are normalized to range [0, 1]. More
details including the hyper-parameters are listed in Appendix. B.

Measurement operators. For sparse-view CT reconstruction, we uniformly sample 18 and 32 views.
For limited-angle CT reconstruction, we restrict the imaging degree range to 45 and 90 degrees
with 128 views using parallel beam geometry. For random inpainting, following Chung et al. (2022,
2023b), we mask out 99% of the total pixels (including all the channels). For super-resolution, we use
8× bilinear downsampling. Gaussian noise is added in the nature image evaluation after a forward
operation performed with σ = 0.05. The medical data are evaluated without noise.

4.2 Evaluation on medical data

To assess the performance of LDIR in reconstructing medical sparse data, we compare it with
several recent state-of-the-art methods: manifold constrained gradients (MCG) Chung et al. (2022),
diffusion posterior sampling (DPS) Chung et al. (2023b), comprehensive learning enabled adversarial
reconstruction (CLEAR) Zhang et al. (2021), fast iterative shrinkage-thresholding algorithm with
total-variation (FISTA-TV), and the analytical reconstruction method, filtered backprojection (FBP).
Peak-signal-to-noise-ratio (PSNR) and structural similarity index measure (SSIM) are used for
quantitative evaluation.

The quantitative results of medical sparse data reconstruction are demonstrated in Tab. 1 and Tab. 2.
Our method outperforms all other state-of-the-art methods by a significant margin across all exper-
iment settings. We also compare our method in the high-resolution CT image reconstruction task
with zero-shot methods. However, due to the large memory consumption of DDPM, it is challenging

7



Table 1: Quantitative evaluation (PSNR, SSIM) of medical image reconstruction on AAPM test
256× 256 dataset. We mark bold for the best and underline for the second best. CLEAR Zhang et al.
(2021) is a supervised method.

Method
Sparse view Limited angle

18 32 45 90

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
FBP 24.76 0.5296 28.03 0.6779 16.65 0.5422 20.35 0.5113
FISTA-TV 24.86 0.5408 28.14 0.6888 16.66 0.5463 20.40 0.5241
CLEAR 32.28 0.8798 36.24 0.9257 25.71 0.8559 31.60 0.9223
MCG 28.54 0.8135 28.98 0.8242 26.08 0.7418 28.44 0.8079
DPS 28.55 0.8140 28.97 0.8242 28.25 0.8204 28.25 0.8088

LDIR 39.01 0.9552 39.77 0.9612 30.05 0.8747 32.68 0.9032

Table 2: Quantitative evaluation (PSNR, SSIM) of medical image reconstruction on AAPM test
512× 512 dataset for zero-shot methods. We mark bold for the best and underline for the second
best.

Method
Sparse view Limited angle

18 32 45 90

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
FBP 23.48 0.5096 26.70 0.6423 16.53 0.5480 19.88 0.4932
FISTA-TV 23.93 0.5566 27.11 0.6768 16.59 0.5695 20.08 0.5348

LDIR 27.30 0.8443 27.33 0.8441 26.18 0.8355 26.70 0.8381

to train DDPM models for high-resolution reconstruction. Thus, we exclude MCG and DPS which
rely on DDPM from Tab. 2. The results show that LDIR provides noise-free reconstruction results,
although there is still a significant gap between the reconstructed images and the ground truth. In
contrast, other zero-shot methods fail to reconstruct meaningful results.

The qualitative results of medical sparse image reconstruction are demonstrated in Fig. 3 which are
consistent with the quantitative results reported in Tab. 1. In Fig. 3, we compare our method with the
state-of-the-art zero-shot unsupervised and supervised methods. We observe that our method can
provide high-quality reconstructions, especially for the sparse view reconstruction task. Specifically,
LDIR can provide better overall structure and nearly artifact-free reconstruction. Additionally, our
method also provides better reconstructions than other methods in limited angle reconstruction tasks.
(More qualitative results of medical sparse data reconstruction can be found in Appendix. D).

4.3 Evaluation on nature images

In order to further test the performance of our method, we compare our method against state-of-
the-art methods, namely, MCG, DPS, and plug-and-play alternating direction method of multipliers
(PnP-ADMM) Chan et al. (2016). For quantitative analysis, we utilize three widely-used perceptual
evaluation metrics: LPIPS distance, PSNR, and SSIM.

The quantitative results of nature image reconstruction are illustrated in Tab. 3. Our method achieves
competitive results compared to the previous state-of-the-art. Specifically, we observe that our method
is able to accurately reconstruct the original data and preserve the most data consistency, even when
dealing with highly sparse measurements such as 99% random inpainting. Additionally, we note that
LDIR gains some advantages over the previous best method on the super-resolution task.

The qualitative results of nature sparse image reconstruction are demonstrated in Fig. 4. Notably, the
traditional iterative method PnP-ADMM failed to produce satisfactory results for both the inpainting
and super-resolution tasks due to its limited prior terms. In contrast, our method outperforms the
comparison methods, particularly in terms of color and structure in the inpainting task. In the
super-resolution task, the results obtained by MCG exhibit many artifacts, which are likely due to the
projection stepChung et al. (2023b). Our method, on the other hand, achieves competitive results
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Figure 4: Qualitative results of nature sparse image reconstruction with Gaussian noise (σ = 0.05).

Table 3: Quantitative evaluation (PSNR, SSIM, LPIPS) of nature image reconstruction on CelebAHQ
and LSUN-bedroom dataset. We mark bold for the best and underline for the second best.

Method Type
CelebAHQ LSUN-bedroom

Inpaint SR (8×) Inpaint SR (8×)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

PnP-ADMM Traditional IR 3.97 0.3017 0.8916 22.94 0.6303 0.6820 5.059 0.3236 0.8940 20.14 0.5458 0.7944
MCG Pixel Diffusion 18.91 0.5600 0.2544 12.47 0.1655 0.6713 16.89 0.4555 0.5486 9.39 0.0606 0.8698
DPS Pixel Diffusion 18.95 0.5614 0.2543 24.36 0.7116 0.1089 17.03 0.4587 0.5414 19.15 0.5614 0.3074
LDIR Latent Diffusion 22.14 0.6647 0.2280 25.27 0.7530 0.0878 20.33 0.5845 0.4858 19.83 0.5762 0.3253

with DPS, the most advanced method, with small gaps. (More qualitative results of nature sparse
image reconstruction can be found in Appendix. E).

4.4 Ablation studies

We conducted ablation studies to validate the effectiveness of our approach. we compared the
performance of our latent-based iterative reconstruction approach against a pixel-based iterative
reconstruction approach. To ensure a fair comparison, we conducted these ablation studies on the
medical image reconstruction task, as both the DDPM and LDM models were trained using the same
protocol.

In Table 4, we can observe that our LDIR outperforms both pixel-based iterative reconstruction
methods, DPS and DIR, by a large margin. This result confirms that the latent-based approach is
superior to the pixel-based approach in terms of both speed and accuracy. Additionally, we can
see that changing the evaluation function to L1 and using a Momentum-like gradient update policy
in the pixel space can improve the performance of DIR, allowing it to surpass DPS. Compared to
pixel-space models, LDIR achieves significant speed-up with less memory consumption. Although
LDIR decodes latent into pictures at each step, it still has a greater advantage than processing directly
in pixel space.

5 Conclusion

In this paper, we propose Latent Diffusion Iterative Reconstruction (LDIR) as a novel approach for
reconstructing CT sparse data in a zero-shot manner. We show theoretically that utilizing the latent
diffusion models as the prior term is able to ignore the depends for the paired data. In addition, we
generate the prior term in the latent space instead of the pixel space, which encourages us to form a
high-resolution image with lower computational complexity and sampling time. By using sample-
level historical gradient information from the data-fidelity term, we can guide the reconstruction
process in the latent space. Our experimental results demonstrate that LDIR outperforms state-of-
the-art methods including the supervised method on sparse CT data reconstruction and achieves
competitive results on nature image restoration. We believe that our work offers the community a
promising tool for leveraging the rapidly growing field of latent diffusion models to restore high-
quality and high-resolution data from degraded measurements.
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Table 4: Ablation evaluation (PSNR, SSIM) on the effect of latent-based iterative reconstruction. We
mark bold for the best and underline for the second best. DPS Chung et al. (2023b) is a special case
of DIR where U (·) ≜ ||·||2 and use naive gradient update policy.

Method Type
Sparse view Limited angle

Speed(iter/s) ↑ Memory(MB) ↓18 32 45 90

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DPS Pixel Diffusion 28.55 0.8140 28.97 0.8242 28.25 0.8204 28.25 0.8088 20.88 6338

DIR (Ours) Pixel Diffusion 31.45 0.8654 32.82 0.8898 27.31 0.8133 28.98 0.8280 20.75 6338
LDIR (Ours) Latent Diffusion 39.01 0.9552 39.77 0.9612 29.60 0.8779 32.89 0.9116 36.67 4268
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